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Abstract

Dogs have a unique evolutionary relationship with humans, yet little is known about the visual infor-
mation available to them or how they direct their visual attention within their environment. The present
study, inspired by comparable work in infants, classified the items available to be gazed at by dogs
during a common daily event, a walk. We then explored the statistics over the availability of those
categories and over the dogs’ visual attention. Using a head-mounted eye-tracking apparatus that was
custom-designed for dogs, 11 dogs walked on a predetermined route outdoors under naturalistic con-
ditions generating a total of 11,698 gazes for analysis. Image stills from these fixations were analyzed
using computer vision techniques to explore the items present, the space within the visual field those
items occupied, and which of the items the dog was gazing at. On average, dogs looked proportionally
most at buses, plants, people, the pavement, and construction equipment; however, there were signifi-
cant individual differences. The results of this project provide a foundational step toward understanding
how dogs look at and interact with their physical world, opening up avenues for future research into
how they learn and make decisions, both independently and with a human social partner.
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1. Introduction

What does your dog see on a walk? What catches their visual attention? Studying how
individuals visually interact with the world from their own perspective gives insight into their
cognition in contexts ranging from a pet dog scanning for squirrels to an urban search and
rescue dog navigating rubble to find missing people. Egocentric vision research captures the
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visual information available to an individual, such as the items present in their environment,
from their first-person perspective, as well as how they allocate their attention to those items.
This approach has become widely used to explore how human infants’ visual environments
and interactions change over the course of development and how these changes impact, among
other things, their developing ability to recognize faces and their acquisition of language. At
present, however, real-world egocentric vision research and a better understanding of how
they allocate attention to and learn from their real-world environment have been, with some
exceptions, mostly limited to humans (Rodin, Furnari, Mavroeidis, & Farinella, 2021; Smith,
Yu, Yoshida, & Fausey, 2015).

The present research uses head-mounted eye-tracking to explore the visual statistics of the
environment and gaze behaviors of the domestic dog, a species closely related to humans by
emotional bond and relied upon by humans in a variety of working roles and as compan-
ions. There is a growing interest in how dogs visually interact with their world. Dogs are
relied upon to navigate the human-built visual world in a variety of work settings (i.e., as
guide dogs for the blind) and as pet dogs, yet little is known about how they allocate their
visual attention to complete these tasks. Dogs have worse visual acuity and less sensitive
color perception than humans. In contrast, dogs are more sensitive to flicker rates, and they
surpass human visual performance in dim lighting conditions (Byosiere, Chouinard, Howell,
& Bennett, 2018). Researchers have also made advances in understanding how dogs respond
to visual stimuli using stationary, screen-based eye-tracking (Karl, Boch, Virdnyi, Lamm, &
Huber, 2020; Somppi, Tornqvist, Hinninen, Krause, & Vainio, 2012). By presenting precise
stimuli on screens and recording dogs’ eye movements, we know that dogs can recognize
photos of familiar human and conspecific individuals (Somppi, Tornqvist, Hinninen, Krause,
& Vainio, 2014) and that they respond differentially to human faces expressing different emo-
tions (Karl et al., 2020; Kis, Hernadi, Mikldsi, Kanizsar, & Topal, 2017; Somppi et al., 2016).
Dogs tend to direct their visual attention to living creatures in the foreground (vs. the back-
ground), a pattern also observed in chimpanzees and humans (Kano & Tomonaga, 2013;
Tornqvist, Somppi, Kujala, & Vainio, 2020).

In all, screen-based eye-tracking studies and other screen-based research have made
important advances, and they capture detailed and highly precise measurements of looking
behaviors in response to images and videos. However, these systems are not appropriate
for all research questions, and participants’ eye movements in a naturalistic context (i.e.,
while walking) cannot be explored. As such, it is not currently known how dogs (or canids
in general) visually interact with their daily real-world environment, including the kinds
of items that are present in their field of view and how they allocate their visual attention.
Dogs, like many species, might perceive their world as structured into high-level visual
categories. In particular, dogs may use a primarily top-down approach, actively directing
their visual attention to certain categories or classes of items. In this case, dogs, like human
infants by approximately 6 months of age (e.g., see Hunnius & Bekkering, 2010; Reynolds,
2015), could be visually attending to objects in a sophisticated manner, responding to the
type or category of object. Dogs may also display signs of anticipatory looking, directing
their attention to locations where items of interest could appear. On the other hand, it is also
possible that dogs may only have our shared bottom-up processes but lack a categorical- or
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identity-based understanding of their visual world. In this case, dogs may be using vision, but
their looking behavior is not primarily based on item category or identity. Dogs’ vision could
be best explained by a bottom-up process, where they are primarily responding to low-level
visual cues and saliency. If this is the case, we would expect that a model of image saliency,
a bottom-up approach that identifies the most salient region of an image on the basis of
low-level cues like brightness and luminance, would capture dogs gazing behaviors. Finally,
while unlikely, as a possibly predominantly olfactory species, dogs’ visual attention may be
random or driven by their noses and not by visual features of the environment. If true, we
would expect gaze to be randomly distributed.

We aimed to capture how dogs direct their visual attention using head-mounted eye-
tracking to record what items were in the dogs’ field of view (their relative frequencies
and sizes) and which of the items they looked at. We also incorporated computer vision
techniques to identify these items, something that was previously extremely labor-intensive.
Finally, we compared dogs’ visual attention behaviors to existing image-saliency models to
explore if dogs’ gazing behaviors were accurately captured by low-level visual-perceptual
cues. Identifying how dogs direct their visual attention outdoors is particularly relevant given
the numerous real-world working roles dogs serve in, where they must traverse complex
outdoor environments.

1.1. Head-mounted eye-tracking

To study gaze in more naturalistic environments, researchers have begun using head-
mounted eye-trackers. These systems capture the wearer’s first-person view of the world, as
well as record their eye movements. This captures both the items present in the environment
and which of those items the participant looked at. They can be worn in a variety of ways
(i.e., caps, glasses, goggles), allowing for their use in exploring natural behaviors with head
shapes ranging from peacocks to lemurs (Shepherd & Platt, 2006; Yorzinski, Patricelli, Bab-
cock, Pearson, & Platt, 2013), and more recently, dogs (Pelgrim, Espinosa, & Buchsbaum,
2022). Head-mounted eye-tracking has also been used to facilitate cross-species comparisons
of visual behavior, such as by comparing how cats and humans coordinate eye and head
movements (Einhéduser et al., 2009). The largest take-up of this method, though, has come
from research on young infants.

Describing what participants have visual access to is inherently useful and necessary to
explain behavior and available cognitive mechanisms. Head-mounted eye trackers have given
us insight into how infants respond to their mother’s voices (Franchak, Kretch, Soska, &
Adolph, 2011) and how infants and parents coordinate joint attention to items (Yu & Smith,
2013). They have also been used to capture how visual attention changes over development.
As children transition from crawling to walking, they move from looking at the floor in front
of them while in motion to looking at walls, items, and caregivers. This changes their fre-
quency of looks to caregivers because in order to look at their caregiver, crawlers have to stop
and either sit or crane their heads, whereas walkers can stay in motion and look ahead (Kretch,
Franchak, & Adolph, 2014). An improved understanding of infants’ visual experiences has
informed theories on language acquisition, namely, that a statistical learning framework can
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reasonably be applied to word learning because of the distribution of item frequencies in
naturalistic scenes. For example, the first nouns that children learn tend to be those items
most frequently present in their environments (e.g., spoon, bowl) (Clerkin, Hart, Rehg, Yu, &
Smith, 2017; Smith, Jayaraman, Clerkin, & Yu, 2018). In sum, the items present in a child’s
environment support their learning and development. Capturing the types and distribution of
items in children’s visual environments has informed our understanding of their development
across cognitive and social domains (Jayaraman & Smith, 2020).

The present study seeks to describe and categorize both the visual information available
to dogs in their daily environments, as well as characterize how they direct their attention
within that space. We took an ecologically valid approach to understanding dogs’ attention in
their daily environment by having dogs walk with their guardians in a normal fashion along a
predetermined route.

Our study had three major aims. First, we explored the relative frequency that items were
present in the dogs’ field of view, providing us with an understanding of the items available
for dogs to look at in an ecologically relevant context. Second, we evaluated how dogs looked
at the items in their field of view, exploring for consistency in looks across exposures to par-
ticular item classes (e.g., people) when those items were present in the environment (i.e., if
they looked at a person each time there was a person in their field of view or if they rarely
looked at people while people were in their field of view). We evaluated this using the pro-
portion of time dogs fixated on the item relative to the amount of time that item was in their
field of view. We particularly wanted to explore the social domain, namely, if people were
looked at consistently across exposure and if they were looked at more than other nonsocial
items. We also examined if dogs’ visual attention to items in their field of view was predicted
by the item categories present in their visual environment or could instead be explained by
low-level properties of items rather than the identity of the item class, using image saliency
analysis. Our third aim was to look for any individual differences in visual attention to item
classes between dogs, considering both the items in their view and which of those items they
looked at. It is possible that dogs may differ in what items they find visually interesting, which
could result in differences both in the items in their field of view and in which of those items
they looked at. Historically, this work would have been logistically challenging due to the
time required to annotate the items present in the dogs’ field of view. We developed a com-
puter vision pipeline to identify each of the items in the image on a pixel level, segmenting
out the individual items from the broader image and then applying class labels to each pixel-
identified item. Potential classes were determined in advance based on common items present
across multiple dogs’ walks. We then integrated the eye-tracking data to provide a label for
the item the dog was gazing at for each fixation.

2. Behavioral methods

2.1. Ethical note

This study was approved by the Brown University Institutional Animal Care and Use
Committee (IACUC), protocol number 20-05-0002. Procedures were in accordance with the
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ASAB/ABS Guidelines for the Use of Animals in Research and complied with the United
States Department of Agriculture Animal Welfare Act & Regulations. All participants were
pet dogs who were walked by their guardians throughout the session.

2.2. PFarticipants

Participants were 11 dogs (female = 7, mean age = 6.5 years) recruited for participa-
tion in a broader eye-tracking training program. Dog breeds represented were one Minia-
ture American Shepherd, one Australian Labradoodle, two Golden Retrievers, two Labrador
Retrievers, and five Mixed Breeds. Each dog was recorded walking along the route once. An
additional two dogs were excluded from data analysis due to camera displacement (n = 1)
and a refusal to walk while in the goggles (n = 1). Dogs were chosen for suitability with
the eye-tracking training program and the guardian’s willingness to complete the training.
Prior to participation in this experiment, dogs were trained at home by their guardians to wear
the eye-tracking goggles using commercially available dog goggles following the methods
described by Pelgrim et al. (2022), see Supplementary Materials for more details. The purpose
of this training was to acclimate dogs to the goggles so that they were comfortable wearing
them. Dogs were approved to begin participation if guardians reported they were comfortable
walking and behaving normally at home and outdoors, wearing training goggles for at least
10 min.

2.3. Procedure and materials

Throughout sessions, dogs wore a custom-developed head-mounted eye-tracker consisting
of two cameras affixed to dog goggles (Positive Science, Inc.). One camera records the dog’s
right eye via an infrared eye camera with an adjacent infrared emitting diode (hereafter the
eye camera). The other camera (hereafter the scene camera) recorded the dogs’ first-person
perspective, recording a field of view of 101.55° horizontal and 73.60° vertical. Videos from
both cameras were digitized at 29.96 frames per second. This apparatus, acclimation, and
calibration procedures are adapted from comparable models in other species and have been
validated in dogs using alternative methods (Fig. 1; Pelgrim et al., 2022). Dogs also wore a
harness throughout their session to hold the video recording pack and its battery.

Prior to starting their walk, dogs first completed a calibration procedure. This procedure
allowed for the dogs’ eye movements as recorded from the eye camera to be mapped onto
the field of view recording from the scene camera, the result being the dogs’ gaze (or where
in their environment they were looking), which could be extrapolated offline for the entire
recording, after the session (Pelgrim et al., 2022). Consistent with previous work, we cali-
brated the eye-tracker when the experimenter drew dogs’ attention to specific points using a
treat. The dog’s guardian held their dog’s head stationary while the dog followed treats held
by an experimenter, via eye movements alone, through five unique points in space. Each point
in space where the dog looked at the experimenter provided a known point, meaning that the
positioning of the dogs’ pupil and corneal reflection was linked to where in their first-person
view they were looking. The five points were chosen to be spread widely across the dogs’
first-person view, thus requiring a wide range of eye movements. These eye movements made
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Fig. 1. (a) A dog wearing the eye-tracking goggles which had two cameras. (b) The dog’s eye recorded from the
eye camera. (¢) The dog’s view recorded by the scene camera. (d) The dog’s view with their gaze indicated by the
blue circle.

the offline extrapolation of the point of regard for the entirety of the walk using eye-tracking
software more accurate.

During the calibration procedure, a removable handheld screen was plugged into the
recording pack to allow the experimenter to verify the eye camera was recording a clear and
centered image. After the dog looked at the experimenter in all five points, as judged by the
experimenter, the LCD screen was removed. The calibration procedure was completed both
before and after the walk to provide enough known points for (1) a successful calibration and
(2) verification of that calibration accuracy (more details in Data Coding and Preparation).

Following the first calibration, dogs walked with their guardians, following the experi-
menter’s directions, along a preset route. The route was 0.5 miles and was chosen for its
variety of scenery, including both city streets and quiet campus greenspaces. Guardians were
instructed to walk their dogs as normal, and the experimenter followed behind or adjacent to
the dog—guardian pair. If at any point during the session, the eye-tracker was disturbed or
shifted (i.e., the dog shook their body or brushed against a wall), the fit was adjusted, and the
eye image was verified. In the event of tracking disruption, the calibration procedure was also
repeated.

2.4. Data coding and preparation

After the session, video data recorded from the eye and scene cameras were combined
as described above, using between 4 and 9 calibration points (Yarbus eye-tracking software,
Positive Science Inc.). This process identified both the timing and the direction of dogs’ gaze,
referred to from here on as fixations. Fixations were defined as a stable eye positioning lasting
for 100 ms or more as determined by the eye-tracking software in keeping with past work
(Pelgrim et al., 2022). More specifically, the timing (start and stop in ms) and the dog’s point
of regard in the visual scene (defined by x-y coordinates from the scene camera) was identified
for each fixation.
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This eye-tracking system has previously been established to have a spatial accuracy of
approximately 2—4° in humans (Franchak et al., 2011, Watalingam, Richetelli, Pelz, & Speir,
2017), around 4° in peacocks (Yorzinski et al., 2013) and around 3.6° in dogs indoors (Pel-
grim et al., 2022). The spatial accuracy of the eye camera mapping onto the scene for our
outdoor walks was calculated, as in past work, using the unused points from the calibration
procedure. The distance between the extrapolated point of regard (where the eye-tracking
software calculated the dog to be looking) and the known point of regard (where the dog was
known to actually be looking, namely, at the treat bag in the experimenter’s hand) was cal-
culated for approximately 20 frames across the calibration points not used for the mapping,
providing the spatial accuracy of the mapping, in degrees, for each dog. The spatial accuracy
for the present sample was 5.32°. This is less precise than past implementations mentioned
above; however, it was to be expected given that this is the first time this system has been
deployed outdoors under natural variable lighting conditions. Further, the spatial accuracy of
the tracking for each dog was accounted for when determining dogs’ fixated items, creating a
region of fixation for each look.

Each fixation was segmented into the items present (and, therefore, available to be looked
at), and coded for the classes of those items (see Fig. 2), the identity of the item (or items)
the dog was looking at, and the relative proportion of the dog’s field of view taken up by
each item (a function of both the item’s proximity to the dog and the item’s absolute size, see
below), using computer vision techniques (see Computer Vision section). One limit of our
relative size calculations is that our eye-tracking cameras do not record depth information, so
object size and proximity cannot be separated (objects that are very close will be recorded
as larger, and large objects in the distance will be recorded as smaller). The classes of items
were chosen ahead of data collection as they were consistently present on the predetermined
route. Fifteen items were chosen in total based on the items available in the real world for
multiple dogs (Table 1).!

The primary focus of this study was how dogs interact with their world visually, so
instances where dogs were relying on another sense (such as while sniffing) were removed.
Sniffing bouts were defined as looks where two or fewer items were present in the environ-
ment. As an example, when a dog was sniffing a pole, the only items visible in the environ-
ment were the pole and the plant and both were so close to the camera that it is unlikely that
the dog was visually considering them (see Supplementary Materials).

In some cases, the dog could be fixated on at a location occupied by more than one item (see
Fig. 3). To determine which item(s) the dog was gazing at, we examined the items identified
by our computer vision output that were present in the fixated region (the target of fixation
plus the calibration margin of error for each dog). For each item present in the fixated region,
we weighted the item according to how much of the fixated region it occupied (Fig. 3).> For
example, as in Fig. 3, if approximately 50% of the pixels in the fixated region were occupied
by an item in the class horizontal plants, and approximately 25% each by items in the classes
vertical plants and buildings, the fixation weight would be 0.25 each for the building and
vertical plants, and 0.5 for the horizontal plants. For each fixation, we also weighted the
duration of time spent looking at each class contained within the fixation region based on
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Person

Image of a dog looking to
its guardian. The R Pavement
computer vision algorithm
identified a person, the
pavement, the sky, a car, a
vertical plant, and a bus.

Image of a dog at the path \
ahead and the person. The
algorithm identified a
person, the pavement, the
sky, buildings, horizontal
and vertical plants, and a
pole

Person

Pavement

Fig. 2. Two examples of images segmented into items from the test set, using our MaskRCNN segmentation
approach. Left—original image, captured by head-mounted camera; Right—fine-tuned MaskRCNN’s predicted
segmentation masks. The shaded field indicates the identified item and the dashed rectangle shows the outer
boundaries of each item. Unique class labels are bolded for easier visualization.

the proportion of the fixated region that item occupied (i.e., a 200-ms fixation to a region
containing 50% sky and 50% building would count as 100 ms to each of the two classes).

2.5. Image saliency analysis

Dogs could be directing their attention based on interest in different item classes, or it could
be a more bottom-up process driven by low-level image features contributing to increased
saliency of regions of the image. To examine what a bottom-up visual approach would look
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Looking behaviors to classes across dogs

90f23

Avg. proportion of

Avg. proportion of time

Avg. size when

Object time in view (SE) fixated while in view (SE) in view (SE)
bench/chair 0.033 (0.005) 0.012 (0.004) 0.01 (0.001)
bicycle 0.024 (0.007) 0.099 (0.032) 0.031 (0.003)
building 0.878 (0.022) 0.144 (0.012) 0.145 (0.015)
bus 0.008 (0.005) 0.348 (0.094) 0.187 (0.024)
car 0.299 (0.05) 0.064 (0.015) 0.027 (0.003)
construction 0.011 (0.003) 0.145 (0.04) 0.044 (0.007)
pavement 0.885 (0.047) 0.381 (0.069) 0.336 (0.027)
person 0.389 (0.067) 0.157 (0.034) 0.131 (0.017)
plant_horizontal 0.616 (0.041) 0.174 (0.032) 0.18 (0.019)
plant_vertical 0.934 (0.018) 0.269 (0.058) 0.212 (0.02)
pole 0.168 (0.019) 0.027 (0.008) 0.022 (0.003)
scooter 0.008 (0.002) 0.077 (NA) 0.012 (0.006)
sculpture 0.037 (0.005) 0.036 (0.01) 0.015 (0.004)
sign 0.013 (0.003) 0.049 (0.011) 0.028 (0.009)
sky 0.838 (0.022) 0.07 (0.026) 0.075 (0.01)

Note. Only one fixation to a scooter occurred in our sample, so there is no standard error for fixations to that
class.

Fig. 3. The procedure used to estimate the probability distribution over fixated objects. Left-to-right: Given the
fixation region in the image identified in gray (Left), we consider portions of predicted object masks that intersect
the fixation region (Center) in our estimate. We estimate the probability of the fixation toward a given class (e.g.,
class “A”) by normalizing the total number of pixels in the intersection belonging to the given class (i.e., the pixels
in the intersection belonging to “A”) over the total number of pixels belonging to all classes in the intersection
(i.e., the pixels in the intersection belonging to “A,” “B,” and “C”).

like, we conducted image saliency analyses using Saliency Toolbox Version 2.3, a well-
established and validated model (Walther & Koch, 2006). For a given image, the Saliency
Toolbox generates feature maps for standard low-level image features (i.e., luminance, color
intensity and opponency, orientations) which are then combined eventually resulting in a
saliency map. Dogs have different color vision than humans do, so to account for this, we
conducted our image saliency analysis first in grayscale, and then in full color. This allowed
us to compare dogs’ observed real-world fixations to their expected fixations within the same
images if their gaze was primarily driven by low-level image features. If fixations predicted by
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the saliency model generally align with dogs’ real fixations, it would suggest that dogs’ visual
attention is primarily driven by low-level image features. In contrast, if the saliency model is
a poor predictor of dogs’ real-world fixations, while item class is a better predictor, it would
suggest that dogs’ visual attention is being driven by more complex factors, including item
category or identity.

3. Computer vision

3.1. Methods

Our head-mounted eye-tracking approach generates an average of 1063 fixations in an 11-
min walk. It is, therefore, not practical to manually annotate the items present in each fixation.
Manually annotating the items present from the look image at each fixation would have taken
around 1200 hours based on the time taken to annotate the data set used for training and testing
our computer vision approach. Using computer vision significantly reduced the time required
to identify the items in dogs’ look images. After the computer vision approach was trained,
each dog’s complete walk could be annotated in a matter of minutes. Our aim was to automate
the segmentation of images into items, the classification of those items, and the identification
of the items the dog was gazing at. To do this, we utilized an automated computer vision
method for panoptic segmentation (simultaneous identification of items within the image and
their item classes). This approach served to identify and label the item classes present at each
fixation (Fig. 2). We used an off-the-shelf object identification algorithm (Mask R-CNN with
ResNet-101-based Feature Pyramid Network backbone, He, Gkioxari, Dollar, & Girshick,
2018) that was pretrained on a publicly available image data set (Microsoft Common items
in Context, Lin et al., 2015). We then adapted and trained it using a training set of annotated
scene images taken from our own data. We used 610 manually annotated images from our
data set for training and an additional 621 images for testing. Training and test sets contain
comparable distributions of item classes. See Fig. 2 for an illustration of how the model
functions. We find that our fine-tuned model performs very well in matching the ground-truth
annotations from our test set. After confirming our model’s performance on the test set, we
ran it on our remaining data. For complete details on data set curation and annotation and
model training, see Supplementary Materials.

After the images were segmented into items and labeled, we integrated the eye-tracking
fixation data (in conjunction with the spatial accuracy of the eye-tracking system) to create a
probability distribution of the potential fixated item class, in order to create a fixation weight
as described above (Fig. 3). We used the calibration error of the eye-mounted camera to
estimate the radius of error around the fixation pixel; we assumed that the true fixation is
expected to lie within this fixation region. To estimate a distribution over fixated items, we
normalized the pixel counts for each identified object within the intersection by the total
number of pixels in the fixated region assigned to an item class; this generated a probability
distribution over possible fixation items for the image. Fig. 3 highlights a visual example of
this probability distribution computation, as discussed earlier (see Supplementary Materials
for additional details).
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Across the 11 dogs, a total of 11,698 fixations were recorded spanning 102,868 frames.
After eliminating sniffing bouts, or look images that contained two or fewer items in the
view as described in data coding and analysis, as well as those that did not result in any
predictions from our computer vision analysis, 10,296 look images remained. This set was
used in subsequent calculations and analyses.

3.2. Computer vision results

We first verified that our computer vision model was generalized. To be successful, our
computer vision algorithm needed to accurately identify item classes across the whole of the
image, matching in overall coverage and class label with our human annotated images (our
ground truth). To evaluate our model performance, we evaluated performance across metrics,
specifically overall image coverage by identified items, class-specific coverage, and fixated
region class identification. We also examined both the true positive rate, false positive rate,
and the confusion on a class-by-class level (Fig. 4). All model evaluations were done by
comparing our model annotated test set to the ground truth data.

First, we compared the overall coverage of the image from our computer vision model to
our ground truth. The average percent of coverage over the frame (consisting of the total area
of all model-identified item classes), across the four dogs in the test set, was smaller in area
than ground-truth masks. Our fine-tuned model covers on average 84% of the image, relative
to the 93% average of our human annotators. Given this reduction in coverage, we next wanted
to evaluate if this resulted in changes in the classes identified in our fixated regions, a critical
part of our analysis. We found that they did not significantly impact class distributions for
fixation predictions.

Next, we examined the overlap of the generated classes to the ground-truth classes. We
evaluated the Intersection Over Union (IoU) or the number of pixels from each of the model-
identified classes overlapping with the ground-truth classes, normalized by the number of
pixels in the union of the predicted and ground-truth identified classes. We found that the
fine-tuned model achieves IoU substantially greater than random chance—indicating that the
generated masks identifying the item classes are semantically relevant. The median IoU across
all classes is 60% (10 x higher than chance) with a maximum IoU of 85% for the “bus”
class and a minimum IoU of 42% for the “pole” class. In comparison, the maximum IoU
by random chance is 8% for the “sky” class. For complete model performance metrics, see
Supplementary Materials.

4. Statistical analyses

As a first step to understanding how dogs’ view natural scenes, we quantify the items
present in dogs’ field of view. We report on the proportion of time each item class was present.
We then conducted a 15 (item class) by 11 (dog identity) ANOVA to explore the impact of
class and dog identity on the average proportion of time items were in view for each dog.?
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Fig. 4. Confusion matrix comparing, for our test set, the frequency of identification of an instance of a class relative
to its ground-truth occurrence. Items classed as “background” mean that our algorithm failed to identify the item
as one of the itemized classes.

Our next goal was to examine how dogs directed their visual attention at the items present
in their environment. We considered a number of factors that could impact how dogs look at
item classes, specifically class identity, dog identity, and item size. To explore the impact of
dog identity and item type, we conducted a logistic regression with a Firth’s correction using
the logistf package in R exploring the coded binary fixation data as a function of the item
class, dog identity, and an interaction between dog and item class. To conduct this analysis, we
used a subset of the classes, exploring only those classes (11/15) that were present in all dogs’
views (removing buses, signs, construction equipment, and scooters). We also conducted post-
hoc pairwise comparisons using a Tukey correction. To examine the impact of object size,
we first conducted a Spearman correlation relating the average size of the item class to the
time fixated on that class (relative to the time it was in view). Next, we used a linear mixed
effects model to integrate the possible contributors of visual attention, examining the fixation
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duration as a function of the fixated item class(es), size of fixated item(s), and a possible
interaction between the size and item class. We also included a random intercept for each dog.

As a final step, we evaluated the saliency models’ predictions for where dogs would look, if
their attention was driven primarily by low-level image features, against our fixation data by
evaluating the Area Under the Curve (AUC) of the Receiver Operating Characteristics (ROC)
(Bylinskii, Judd, Oliva, Torralba, & Durand, 2019). This compares the accuracy, using true
and false positive rates, of the saliency model, relative to the ground truth from the fixation
data. We used AUC-Judd, a variant of AUC with a repeated threshold approach. For each
potential threshold on a pixel-by-pixel level, all points above the threshold are considered
“fixations.” Instances where the actual fixation overlaps with the predicted “fixations” based
on the threshold are considered true positives, and the points that are above the threshold but
do not overlap with the true fixated region are considered false positives. The ROC curve is
plotted from these two values, and AUC-Judd scores can range from .5 (random classification)
to 1 (perfect performance) (Bylinskii et al., 2012.; Judd, Durand, & Torralba, 2012).

5. Behavioral results and discussion

5.1. Items in view

Our first aim was to explore the items present in dogs’ field of view during their walks.
This is a necessary first step to understand how dogs direct their attention within their field of
view. We found a significant effect of item identity, F(14, 140) = 172.07, p < .001, np2 =0.95,
confirming that some item classes were more commonly present in dogs’ view, and available
to be looked at, than others.

On average, dogs tended to have common scene components—plants (horizontal and ver-
tical), pavement, buildings, and the sky—present in their field of view on the majority (>
50%) of their fixations. In addition to these ubiquitous items, dogs had certain categories of
items available for gaze moderate amounts of time (< 50% and > 10% of fixations). These
included people, cars, and poles. Finally, some categories were rarely in dogs’ view, including
sculptures, benches/chairs, bicycles, signs, construction equipment, buses, and scooters. See
Table 1 for a summary of the proportion of time all coded item categories were in view. We
also found no effect of dog identity, (10, 140) = .879, p = .55, np2 = 0.06, meaning that the
dogs in our study encountered similar item classes along their walk, and did not differ in the
proportion of time that different item categories were in their view. Given that dogs walked
the same route, they had the opportunity to orient their fields of view toward many of the same
static items (e.g., buildings) for comparable amounts of time; however, it is still notable that
dogs’ different sizes, training experiences, and personalities did not result in them directing
their heads differently on their walks.

5.2. Relative time looking to items

Our second aim was to explore how dogs allocated their visual attention to the items in
their view (Fig. 5). As mentioned previously, it is possible that dogs are not attending to items
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Fig. 5. Average proportion of fixated to each class, relative to the time the class was in view. Dots indicate indi-
vidual dogs’ averages.

on the basis of class, but are looking randomly at the items in their view. If this is the case, we
would expect dogs’ fixations to items in their view to be uniform across classes. In contrast,
dogs may be actively directing their visual attention, selectively looking to certain classes
more than others when they are available in the environment. Dogs may also differ in the way
they direct their visual attention, and this individual difference may interact with the class
identity. For example, some dogs may fixate on a class the majority of the time it is in their
view, while others never look to that class.

We first explored in a binary fashion how often dogs fixated to an item class when it was in
view, and if this differed across dogs or potential dog—class interaction. We found a signifi-
cant main effect of item class, X>(10) = 1348.97, p < .001. This suggests that dogs are not
uniformly or passively observing the items in their field of view but are actively directing their
attention to certain classes of items. For example, dogs looked frequently to people, 15.7%
of the time they appeared. In contrast, dogs only looked to benches and chairs around 1.2%
of the time they were in view, and post-hoc pairwise comparisons exploring class differences
with a Tukey correction revealed that looks to these two classes were significantly different,
1(51,368) = —5.805, p < .001. Dogs also looked significantly more to people than other aso-
cial classes like sculptures, #(51,368) = 5.137, p < .001, and the sky, #51,368) = 16.346,
p < .001.

In past screen-based eye-tracking research in dogs, plants and sky have been used as the
background material to explore how dogs look at the primary subject of the image, typically
a person or animal present in the foreground (Tornqvist et al., 2020). Interestingly, in our
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sample, dogs were interested in plants and looked at them relatively frequently. Dogs looked
at vertical plants (like trees and bushes that could not be easily moved through by the dog)
26.9% of the time they were in view. This was significantly more than they looked to people,
1(51,368) = —17.154, p < .001. In contrast, another frequent background item from screen-
based eye-tracking, sky, was almost never actually looked at by dogs. The sky was nearly
ubiquitous in dogs’ view, present and available for view on average 83.8% of fixations, yet
dogs looked infrequently at it, only looking at the sky 7% of the time it was in their view
(Table 1). This suggests that, unlike plants, in a real-world context, the sky is treated by
dogs as a background, or at least not something that is worth attending to. Dogs also attend
frequently to the ground in front of them, looking to the pavement 38% of the time it is in view
and looking to horizontal plants (like grasses that could be walked on) around 17.4% of the
time in view. These looks may be for navigational or wayfinding purposes, as past research
in adult humans and in children suggests that when navigating in a real-world context, people
often look to the ground, helping us to map a path forward and to avoid obstacles (20% to the
ground in de Winter et al., 2021, 55.9% to street edges and the ground in Simpson, Thwaites,
& Freeth, 2019, and 31.8% looking to ground obstacles in Franchak & Adolph, 2010).

From the same binary fixation analysis, we found no significant main effect of dog iden-
tity, X>(10) = 4.15, p = .94. However, we did observe a significant interaction between dog
identity and class on fixation behaviors, X*(100) = 3997.19, p < .001. This suggests that
there were individual differences in the way that dogs fixated to classes. For some classes,
there were significant differences between dogs, and dogs were not all alike in which classes
they found visually interesting. As an example, when considering the relative amount of time
dogs spent looking to people in their environment, one dog looked at people 46% of the time
they were in her view. Post-hoc pairwise comparisons using a Tukey correction found that she
looked to people significantly more than most other classes, including items like buildings,
#(51,368) = —5.96, p < .001, horizontal plants, #(51,368) = 10.843, p < .001, and sculptures,
#(51,368) = 4.60, p < .001. In contrast, another dog only looked at people around 5% of the
time they were in her view and pairwise comparisons showed she did not look significantly
more at people than at any other class (p < .05). Post-hoc pairwise comparisons using a Tukey
correction also found that these two dogs looked to people significantly different from each
other, #(51,368) = 4.21, p = .001. In contrast, for other classes like benches and chairs, dogs
were quite consistent in their looking behaviors. On average, dogs looked rarely to benches
and chairs when in view and there were no significant (p < .05) individual differences in
fixations to benches and chairs. See Supplementary Materials for visualizations of individual
dogs. Our results suggest that dogs differ in how visually interesting they find some, but not
all, classes of items. There is little doubt that dogs do experience the world differently, and
their size and life experiences may play a role in this.

5.3. Impact of item size

In addition to the identity of the fixated items present in dogs’ view, we explored how dogs
looked at items as a function of class size. It is possible that dogs are not gazing selectively,
but are simply gazing at the things in their environment that take up the most space. If they are
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selective, we could expect that dogs would occasionally look to items that are comparatively
smaller, either because the object itself is smaller or because it is far away.

Across walks, items differed in size, both within and between items. Some items, like
sculptures and benches/chairs, were consistently very small in dogs’ views (Mculprure = .01,
SD = .04, Myenchichair = -01, SD = .01). In contrast, other items tended to take up large portions
of dogs’ view and varied widely in size (i.e., Mpayement = -35, SD = .17, Mpjan_norizontal = -19,
SD = .19). On 5843 trials, or 56.75% of trials, the largest class in view was one of the fixated
items, as determined from the probabilistic fixation data across the region of fixation. On these
looks, the object took up an average of M = .46, SD = 0.14 of the dogs’ field of view. This
means that on just over half of their total fixations, dogs are looking to the largest item class
in their view at that moment, and that item class on average occupied 46% of dogs’ view.

The average size of the item was correlated with dogs’ fixation to that item. Using a Spear-
man correlation, we found a significant positive correlation between the average size of item
class and time fixated on that class (relative to the time it was in view), r, = .751, p < .001.
While it is interesting that dogs are tending to look at larger items, conclusions from these
results should be limited, as the directionality is unknown. More specifically, it is likely that
dogs will turn their heads and/or move toward items of interest, thus making them bigger.
However, it is also likely that larger items may be more attention-grabbing, and dogs may
be more likely to see them (vs. smaller items which could be equally or more interesting but
more easily missed).

A major advantage of head-mounted eye-tracking is the use of real-world stimuli and
mobile participants, and in this case, our results suggest that dogs may consider at least some
plants to be items of interest, exploring them visually and through other sensory modalities
(the majority of sniffing bouts that were removed included plants and poles); however, they
do not appear to consider the sky as an item class worth investigating. Further research is
needed to make more nuanced conclusions about dogs’ response to plants and other potential
background items.

We explored the duration of each of the dogs’ fixations (n = 10,296, M = 301.8 ms,
SD = 481.09 ms) as a function of the class of item they were looking at, the size of that
item they were looking at, and a possible interaction between the size and item class using
a linear mixed effects model with a random intercept for each dog. We had a total of 16,166
individual targets of fixation, and after distributing the fixation duration across the region, the
average fixation time was reduced (M = 190.11 ms, SD = 368.27 ms). Dogs fixated longer on
some item classes than others, X>(14) = 111.49, p < .001. As an example, dogs’ fixations to
benches/chairs tended to last for a very short time (M = 166.67 ms, SD = 47.14) but dogs’ fix-
ations to cars (another infrequently appearing item) lasted much longer, and were much more
variable (M = 380.87 ms, SD = 582.55). From the same model, we found no main effect of
the fixated item size relative to the current view, X>(1) = .19, p = .66, suggesting that dogs’
fixations were not significantly longer based on the size of the item they were fixating on.
Finally, in the same linear model, we found a significant interaction between item class and
fixated item size, X>(13) = 37.91, p < .001. This suggests that for some item classes, dogs
had longer individual fixations in response to larger instances of the item, but this was not
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true for all classes. We also found some variance across dogs in the duration of their fixations
(SD = 84.66).

5.4. Image saliency analysis

For our full-color analyses, AUC-Judd was 0.67. Similarly, the AUC-Judd for grayscale
analyses was 0.66. This suggests that the saliency model is a poor predictor of dogs’ looking
behaviors, or that it is unlikely dogs’ fixations are driven solely by low-level image saliency
features. The ROC curve as well as further details on AUC calculations and saliency analysis
can be found in Supplementary Materials.

6. Conclusion

The present study aimed to explore both the items present in dogs’ visual environments
as well as which of those items they chose to look at. We integrated computer vision tech-
niques to identify and classify items from the dogs’ perspectives. We found that we were
able to identify and classify the classes of items available in the dogs’ view and how they
directed their attention to them. Within our sample, dogs were very similar in the item classes
they had in their view, mostly encountering plants, buildings, the sky, and pavement. Dogs’
visual attention is active and is not just driven by the low-level image saliency features (e.g.,
luminance, color, orientation). Instead, dogs attend selectively to certain item classes.

In our sample, relative to the frequency of the items in their view, dogs fixated propor-
tionally the most to buses, plants, pavement, people, and construction equipment. Of these,
buses, people, and construction equipment were all relatively uncommon in the dogs’ field of
view. Dogs looking to plants relatively often was unexpected, as plants are often considered
to be background material, similar to the sky which dogs rarely looked to. Further research
is needed in an ecologically valid context like the one presented here to further explore what
components of plant material dogs are interested in.

We also found suggestions of visual neophilia in dogs, with dogs looking more to unusual
and highly variable items, specifically construction equipment. However, dogs were not sim-
ply visually attracted to items that are uncommon along our walking route. Infrequently
appearing items along our route that are ubiquitous in dogs’ daily lives (i.e., benches and
chairs) were rarely looked to. It is unlikely that any of the dogs in our sample were encoun-
tering entirely novel item classes and future research could consider incorporating novel item
classes based on dog’s past experiences to evaluate if this interest in construction equipment
is related to its rarity in dogs’ lives or something more tied to the class itself (large brightly
colored equipment placed in unusual situations). In our sample, dogs did fixate differently to
different classes of items. Some classes like benches and chairs or signs were consistently
uninteresting to dogs, but other classes, like people, had significant variation between dogs.
The relative consistency in item class presence suggests there may be possible true individual
differences in attention to stimuli, including attention to social versus nonsocial item classes.
This is an interesting interaction, and future work should aim to detect more nuanced indi-
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vidual differences, potentially by recruiting more dogs from a variety of breeds or with more
diverse life experiences. Despite this, our findings of individual differences must be treated as
preliminary, due to variations in factors such as the time of day, and the presence of mobile
item classes (e.g., people, buses) between walks, and variations in the behavior of different
dog—guardian dyads (we return to this below).

Like human adults (de Winter et al., 2021; Simpson et al., 2019), dogs frequently attend
to classes (i.e., pavement, horizontal plants) that are directly related to ground navigation,
helping to find a smooth path and monitor for potential obstacles. Prior work in children
(i.e., Franchak & Adolph, 2010) has suggested that children also fixate on obstacles in their
environment while wayfinding to a similar extent. Future work could explore whether dogs’
fixation patterns to obstacles not related to wayfinding in their environment are similar to
children, both in their frequency and timing. This would provide interesting comparisons to
what is attention-grabbing between the two species. Young children and dogs’ similar height
means that the obstacles and items they encounter in daily life are approached from a similar
visual angle, and future work can consider direct comparisons to how they direct their visual
attention in complex real-world environments.

Future research can expand on the item classes identified here. Anecdotally, we noticed
that on many fixations to buildings, dogs were specifically looking to the doors and windows
of buildings. This pattern was also observed with buses, with dogs often looking at the door
of the bus. It is possible that dogs are looking to these portions of buildings and buses because
of anticipated functionality (i.e., dogs look to doors of the buildings because they could enter
through the door) or for anticipatory social reasons (i.e., people often appear in doorways
so doorways are more interesting because of this potential). While this was an interesting
observation, due to the limited spatial accuracy of the eye-tracking system given the variable
outdoor lighting conditions, we were not able to determine with confidence what component
of buildings dogs were looking to on all instances. With increased camera resolution or image
enhancement, future work can explicitly identify whether, for instance, dogs look more to the
door of buildings and cars than they do to the walls of buildings and bumpers or tires of cars
(strictly nonsocial components). This would provide additional insight into dogs’ potential
preference for visually attending to social parts of their environment, which could further our
understanding of how dogs’ complete complex social tasks.

Developing a more nuanced understanding of dogs’ attention to social and potentially
social areas of their environment would also provide an interesting point of comparison to
other nondomesticated canids. While there are no eye-tracking studies in other canid species,
prior work comparing dogs’ and wolves’ gaze behavior has suggested that domestication led
to an increased attention to humans and their faces, evidenced in dogs increased looking back
behaviors and general visual-social attention (Gécsi et al., 2005; Miklési et al., 2003). Further,
comparative studies can also explore how children and dogs visually engage with social part-
ners on comparable tasks, such as when following a point or working with a partner toward a
shared goal. We know that children look to social partners and engage in joint attention tasks
(i.e., Yu & Smith, 2013) and we could use a similar approach in dogs to explore if their visual
engagement patterns are similar.
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Reactive dogs (those that have a strong arousal response to a given stimuli such as a dog or
a person on a bicycle) would also be promising candidates for use in this paradigm to under-
stand how they scan their environments and how they, temporally, respond to triggers. Future
work can consider applying this method, using what dogs’ find visually interesting to create a
predictive model of reactive dogs’ behavior. This could be particularly important for working
dogs, predicting suitability for service roles based on how dogs distribute their visual atten-
tion. We also found, descriptively, that other features of item classes such as movement were
also not large drivers of dog attention. However, many of our item classes moved in a subtle
way where the video quality made potential movement challenging to identify. Future work
can consider staging instances of identical classes in motion versus stationary to formally
examine the impact of movement on dogs’ visual attention.

Another potential source of social input is the dogs’ guardian. In our study, dog guardians
were instructed to walk their dogs as they would normally. No dog guardians actively directed
their dogs’ visual attention; however, there were other differences in the behaviors of dog
guardians while walking their dogs. In particular, guardians used different walking styles,
varying in how far their dog typically is from them, and in whether they provided their dog
with verbal navigational directions. It is possible that these different walking styles may have
contributed to differences in dog gaze behavior between different dog—guardian dyads. Lim-
ited conclusions can be drawn about these different walking styles at this time given our
limited sample. While in this study we opted to aim for ecological validity and encourage
normal walking styles, future work can examine different interaction styles between dogs and
their guardians.

While we excluded intensive sniffing bouts where it was unlikely dogs were engaging in
intentional visual processing of the items in their view, there is still the broader question of
the relationship between dogs’ visual and olfactory attention. Recent work has suggested that
dogs’ olfaction may be integrated into their visual processing, perhaps into a joint represen-
tation of their visual and olfactory environment (Andrews, Pascalau, Horowitz, Lawrence, &
Johnson, 2022). Therefore, the odors in dogs’ environment may be encouraging them to orient
their visual attention to a particular visual target or region (and visual attention may similarly
be guiding olfaction). In these instances, unlike in our sniffing bouts, attention could still be
visual as items are at a distance and reasonable to process visually. Future work can consider
examining how dogs integrate olfactory and visual features in a naturalistic context, such as
examining how search and rescue or other detection dogs direct their gaze while searching
for a person or item.

This study was the first to record how dogs observe their physical environment in a natural-
istic setting. Building upon this understanding, we can now expand into how dogs complete
more complex social tasks. Very little is currently known about how, visually, dogs build a
bond through play with a human companion or how they navigate a complex physical envi-
ronment with social guidance, such as in dog agility. Understanding the visual behaviors that
dogs are utilizing to complete daily tasks, and how those differ from key visual features seen
in human—human interactions, will provide insight into social learning and cooperation in a
unique cross-species context. Additionally, being able to measure how dogs visually interact
with the world while completing tasks is a first step to building an eventual model of dogs’
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visual behaviors, something with significant implications for both working dog and Artificial
Intelligence training.
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Notes

1 We were initially interested in recording conspecifics and/or prey animals (i.e., birds and
squirrels) that were in dogs’ field of view or gazed at by dogs. Unfortunately, neither of
these categories were observed from the dogs’ perspectives on the walks so these were
not coded for, resulting in a total of 15 item classes present and observed on walks.

2 For each analysis of fixations described, we also conducted an alternative analysis using
a winner takes all approach, meaning that for each fixation, we assigned a single target
of fixation based on the majority item in the fixated region. This did not significantly
change the results.

3 In addition to the results presented here, we also evaluated the proportion that classes
were in view from a binary perspective, evaluating the proportion of total fixations that
they were present rather than the proportion of time. These results and visualizations are
consistent with the results presented here and are presented in Supplementary Materials.
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